Интегрирование методом замены переменной. Интегрирование методом замены переменной (метод подстановки) Найти интеграл методом замены переменной

Тип занятия: изучение нового материала.

Учебно-воспитательные задачи:

  • научить учащихся применять метод интегрирования подстановкой;
  • продолжать формировать умения и навыки применения интегрирования функций;
  • продолжать формировать интерес к математике посредством решения задач;
  • воспитывать осознанное отношение к процессу обучения, прививать чувство ответственности за качество знаний, осуществлять самоконтроль за процессом решения и оформления упражнений;
  • напоминать, что только осознанное применение алгоритмов вычисления неопределенного интеграла позволит учащимся качественно усвоить изучаемую тему.

Обеспечение занятия:

  • таблица основных формул интегрирования;
  • карточки-задания для проверочной работы.

Студент должен знать: алгоритм вычисления неопределенного интеграла методом подстановки.

Студент должен уметь: применять полученные знания к вычислению неопределенных интегралов.

Мотивация познавательной деятельности студентов.

Преподаватель сообщает, что кроме метода непосредственного интегрирования существуют и другие методы вычисления неопределенных интегралов, одним из которых является метод подстановки. Это наиболее распространенный метод интегрирования сложной функции, состоящий в преобразовании интеграла с помощью перехода к другой переменной интегрирования.

Ход занятия

I . Организационный момент.

II . Проверка домашнего задания.

Фронтальный опрос:

III . Повторение опорных знаний учащихся.

1) Повторить таблицу основных формул интегрирования.

2) Повторить в чем заключается метод непосредственного интегрирования.

Непосредственным интегрированием называется такой способ интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции и применения свойств неопределенного интеграла приводится к одному или нескольким табличным интегралам.

IV . Изучение нового материала.

Вычислить заданный интеграл непосредственным интегрированием удается далеко не всегда, а иногда это связано с большими трудностями. В этих случаях применяют другие приемы. Одним из наиболее эффективных приемов является метод подстановки или замены переменной интегрирования. Сущность этого метода заключается в том, что путем введения новой переменной интегрирования удается свести заданный интеграл к новому интегралу, который сравнительно легко берется непосредственно. Если после замены переменной интеграл стал проще, то цель подстановки достигнута. В основе интегрирования методом подстановки лежит формула

Рассмотрим этот метод.

Алгоритм вычисления неопределенного интеграла методом подстановки:

  1. Определяют, к какому табличному интегралу приводится данный интеграл (предварительно преобразовав подынтегральное выражение, если нужно).
  2. Определяют, какую часть подынтегральной функции заменить новой переменной, и записывают эту замену.
  3. Находят дифференциалы обеих частей записи и выражают дифференциал старой переменной (или выражение, содержащее этот дифференциал) через дифференциал новой переменной.
  4. Производят замену под интегралом.
  5. Находят полученный интеграл.
  6. В результате производят обратную замену, т.е. переходят к старой переменной. Результат полезно проверять дифференцированием.

Рассмотрим примеры.

Примеры. Найти интегралы:

1) )4

Введем подстановку:

Дифференцируя это равенство, имеем:

V . Применение знаний при решении типовых примеров.

VI . Самостоятельное применение знаний, умений и навыков.

Вариант 1

Найти интегралы:

Вариант 2

Найти интегралы:

VII . Подведение итогов занятия.

VIII . Домашнее задание:

Г.Н. Яковлев, часть 1, §13.2, п.2, №13.13 (1,4,5), 13.15 (1,2,3)

Замена переменной в неопределенном интеграле используется при нахождении интегралов, в которых одна из функций является производной другой функции. Пусть есть интеграл $ \int f(x) dx $, сделаем замену $ x=\phi(t) $. Отметим, что функция $ \phi(t) $ является дифференцируемой, поэтому можно найти $ dx = \phi"(t) dt $.

Теперь подставляем $ \begin{vmatrix} x = \phi(t) \\ dx = \phi"(t) dt \end{vmatrix} $ в интеграл и получаем, что:

$$ \int f(x) dx = \int f(\phi(t)) \cdot \phi"(t) dt $$

Эта и есть формула замены переменной в неопределенном интеграле .

Алгоритм метода замены переменной

Таким образом, если в задаче задан интеграл вида: $$ \int f(\phi(x)) \cdot \phi"(x) dx $$ Целесообразно выполнить замену переменной на новую: $$ t = \phi(x) $$ $$ dt = \phi"(t) dt $$

После этого интеграл будет представлен в виде, который легко взять основными методами интегрирования: $$ \int f(\phi(x)) \cdot \phi"(x) dx = \int f(t)dt $$

Не нужно забывать также вернуть замененную переменную назад к $ x $.

Примеры решений

Пример 1

Найти неопределенный интеграл методом замены переменной: $$ \int e^{3x} dx $$

Решение

Выполняем замену переменной в интеграле на $ t = 3x, dt = 3dx $:

$$ \int e^{3x} dx = \int e^t \frac{dt}{3} = \frac{1}{3} \int e^t dt = $$

Интеграл экспоненты всё такой же по таблице интегрирования, хоть вместо $ x $ написано $ t $:

$$ = \frac{1}{3} e^t + C = \frac{1}{3} e^{3x} + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int e^{3x} dx = \frac{1}{3} e^{3x} + C $$

Замена многочлена или. Здесь - многочлена степени, например, выражение - многочлен степени.

Допустим, у нас есть пример:

Применим метод замены переменной. Как ты думаешь, что нужно принять за? Правильно, .

Уравнение приобретает вид:

Производим обратную замену переменных:

Решим первое уравнение:

Решим второе уравнение:

… Что это означает? Правильно! Что решений не существует.

Таким образом, мы получили два ответа - ; .

Понял как применять метод замены переменной при многочлене? Потренируйся сделать подобное самостоятельно:

Решил? Теперь проверим с тобой основные моменты.

За нужно взять.

Мы получаем выражение:

Решая квадратное уравнение, мы получаем, что имеет два корня: и.

Решением первого квадратного уравнения являются числа и

Решением второго квадратного уравнения - числа и.

Ответ : ; ; ;

Подведем итоги

Метод замены переменной имеет основных типа замен переменных в уравнениях и неравенствах:

1. Степенная замена, когда за мы принимаем какое-то неизвестное, возведенное в степень.

2. Замена многочлена, когда за мы принимаем целое выражение, содержащее неизвестное.

3. Дробно-рациональная замена, когда за мы принимаем какое-либо отношение, содержащее неизвестную переменную.

Важные советы при введении новой переменной:

1. Замену переменных нужно делать сразу, при первой же возможности.

2. Уравнение относительно новой переменно нужно решать до конца и лишь затем возвращаться к старому неизвестному.

3. При возврате к изначальному неизвестному (да и вообще на протяжении всего решения), не забывай проверять корни на ОДЗ.

Новая переменная вводится аналогичным образом, как в уравнениях, так и в неравенствах.

Разберем 3 задачи

Ответы на 3 задачи

1. Пусть, тогда выражение приобретает вид.

Так как, то может быть как положительным, так и отрицательным.

Ответ:

2. Пусть, тогда выражение приобретает вид.

решения нет, так как.

Ответ:

3. Группировкой получаем:

Пусть, тогда выражение приобретает вид
.

Ответ:

ЗАМЕНА ПЕРЕМЕННЫХ. СРЕДНИЙ УРОВЕНЬ.

Замена переменных - это введение нового неизвестного, относительно которого уравнение или неравенство имеет более простой вид.

Перечислю основные типы замен.

Степенная замена

Степенная замена.

Например, с помощью замены биквадратное уравнение приводится к квадратному: .

В неравенствах все аналогично.

Например, в неравенстве сделаем замену, и получим квадратное неравенство: .

Пример (реши самостоятельно):

Решение:

Это дробно-рациональное уравнение (повтори ), но решать его обычным методом (приведение к общему знаменателю) неудобно, так как мы получим уравнение степени, поэтому применяется замена переменных.

Все станет намного проще после замены: . Тогда:

Теперь делаем обратную замену:

Ответ: ; .

Замена многочлена

Замена многочлена или.

Здесь − многочлен степени, т.е. выражение вида

(например, выражение - многочлен степени, то есть).

Чаще всего используется замена квадратного трехчлена: или.

Пример:

Решите уравнение.

Решение:

И опять используется замена переменных.

Тогда уравнение примет вид:

Корни этого квадратного уравнения: и.

Имеем два случая. Сделаем обратную замену для каждого из них:

Значит, это уравнение корней не имеет.

Корни этого уравнения: и.

Ответ. .

Дробно-рациональная замена

Дробно-рациональная замена.

и − многочлены степеней и соответственно.

Например, при решении возвратных уравнений, то есть уравнений вида

обычно используется замена.

Сейчас покажу, как это работает.

Легко проверить, что не является корнем этого уравнения: ведь если подставить в уравнение, получим, что противоречит условию.

Разделим уравнение на:

Перегруппируем:

Теперь делаем замену: .

Прелесть ее в том, что при возведении в квадрат в удвоенном произведении слагаемых сокращается x:

Отсюда следует, что.

Вернемся к нашему уравнению:

Теперь достаточно решить квадратное уравнение и сделать обратную замену.

Пример:

Решите уравнение: .

Решение:

При равенство не выполняется, поэтому. Разделим уравнение на:

Уравнение примет вид:

Его корни:

Произведем обратную замену:

Решим полученные уравнения:

Ответ: ; .

Еще пример:

Решите неравенство.

Решение:

Непосредственной подстановкой убеждаемся, что не входит в решение этого неравенства. Разделим числитель и знаменатель каждой из дробей на:

Теперь очевидна замена переменной: .

Тогда неравенство примет вид:

Используем метод интервалов для нахождения y:

при всех, так как

при всех, так как

Значит, неравенство равносильно следующему:

при всех, так как.

Значит, неравенство равносильно следующему: .

Итак, неравенство оказывается равносильно совокупности:

Ответ: .

Замена переменных - один из важнейших методов решения уравнений и неравенств.

Напоследок дам тебе пару важных советов :

ЗАМЕНА ПЕРЕМЕННЫХ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ.

Замена переменных - метод решения сложных уравнений и неравенств, который позволяет упростить исходное выражение и привести его к стандартному виду.

Виды замены переменной:

  1. Степенная замена: за принимается какое-то неизвестное, возведенное в степень - .
  2. Дробно-рациональная замена: за принимается какое-либо отношение, содержащее неизвестную переменную - , где и - многочлены степеней n и m, соответственно.
  3. Замена многочлена: за принимается целое выражение, содержащее неизвестное - или, где - многочлен степени.

После решения упрощенного уравнения/неравенства, необходимо произвести обратную замену.

Вычислить заданный интеграл непосредственным интегрированием

удаётся не всегда. Одним из наиболее эффективных приёмов

является метод подстановки или замены переменной интегрирования.

Сущность этого метода заключается в том, что путём введения новой переменной интегрирования удаётся свести заданный интеграл к

новому интегралу, который берётся непосредственным интегрированием.

Рассмотрим этот метод:

Пусть - непрерывная функция

необходимо найти: (1)

Сделаем замену переменной интегрирования:

где φ (t) – монотонная функция, которая имеет непрерывную производную

и существует сложная функция f (φ (t)).

Применив к F (х) = F(φ (t)) формулу дифференцирования сложной

функции, получим:

﴾F (φ (t))﴿′ = F′(x) ∙ φ′ (t)

Но F′(x) = f (x) = f (φ (t)), поэтому

﴾F (φ (t))﴿′ = f (φ (t)) ∙ φ′ (t) (3)

Таким образом, функция F(φ (t)) является первообразной для функции

f (φ (t)) ∙ φ′ (t), поэтому:

∫ f (φ (t)) ∙ φ′ (t) dt = F (φ (t)) + C (4)

Учитывая, что F (φ (t)﴿ = F (x), из (1) и (4) следует формула замены

переменной в неопределённом интеграле:

∫ f (x)dx = ∫ f(φ (t)) φ′ (t)dt (5)

Формально формула (5) получается заменой х на φ (t) и dх на φ′ (t)dt

В полученном после интегрирования по формуле (5) результате следует

перейти снова к переменной х. Это всегда возможно, так как по предпо-

ложению функция х = φ (t) монотонна.

Удачный выбор подстановки обычно представляет известные труд-

ности. Для их преодоления необходимо овладеть техникой дифферен-

цирования и хорошо знать табличные интегралы.

Но все же можно установить ряд общих правил и некоторых приемов

интегрирования.

Правила интегрирования способом подстановки:

1. Определяют, к какому табличному интегралу приводится данный интеграл (предварительно преобразовав подинтегральное выражение, если нужно).

2. Определяют, какую часть подинтегральной функции нужно заменить

новой переменной, и записывают эту замену.

3. Находят дифференциалы обеих частей записи и выражают дифферен-

циал старой переменной (или выражение, содержащее этот диффе-

ренциал) через дифференциал новой переменной.

4. Производят замену под интегралом.

5. Находят полученный интеграл.



6. В результате переходят к старой переменной.

Примеры решения интегралов способом подстановки:

1. Найти: ∫ х²(3+2х ) dx

Решение:

сделаем подстановку 3+2х = t

Найдём дифференциал обеих частей подстановки:

6x dx = dt, откуда

Следовательно:

∫ x (3+2x ) dx = ∫ t ∙ dt = ∫ t dt = ∙ + C = t + C

Заменив t на его выражение из подстановки, получим:

∫ x (3+2x ) dx = (3+2x ) + С


Решение:

= = ∫ е = е + C = е + C

Решение:

Решение:

Решение:

Понятие определённого интеграла.

Разность значений для любой первообразной функции при изменении аргумента от до называется определенный интегралом этой функции в пределах от а до b и обозначается:

а и b называются нижним и верхним пределами интегрирования.

Чтобы вычислить определенный интеграл нужно:

1. Найти соответствующий неопределенный интеграл

2. Подставить в полученное выражение вместо х сначала верхний предел интегрирования в, а затем нижний – а.

3. Из первого результата подстановки вычесть второй.

Коротко это правило записывается в виде формул так:

Эта формула называется формулой Ньютона - Лейбница.

Основные свойства определенного интеграла:

1. , где K=const

3. Если , то

4. Если функция неотрицательна на отрезке , где , то

При замене в определенном интеграле старой переменной интегрирования на новую необходимо старые пределы интегрирования заменить новыми. Эти новые пределы определяются выбранной подстановкой.

Применение определённого интеграла.

Площадь криволинейной трапеции ограниченной кривой , осью абсцисс и двумя прямыми и вычисляется по формуле:

Объем тела, образованного вращением вокруг оси абсцисс криволинейной трапеции, ограниченной кривой , не меняющей свой знак на , осью абсцисс и двумя прямыми и вычисляется по формуле:

С помощью определенного интеграла можно решать и ряд физических задач.

Например:

Если скорость прямолинейно движущегося тела является известной функцией времени t, то путь S, пройденный этим телом с момента времени t = t 1 до момента времени t = t 2 определяется формулой:

Если переменная сила является известной функцией пути S (при этом предполагается, что направление силы не меняется) то работа А, совершаемая этой силой на пути от до определяется формулой:

Примеры:

1. Вычислить площадь фигуры, ограниченной линиями:

y = ; y = (x-2) 2 ; 0x.

Решение:

а) Построим графики функций: y = ; y = (x-2) 2

б) Определим фигуру, площадь которой нужно вычислить.

в) Определим пределы интегрирования, решая уравнение: = (x-2) 2 ; x = 1 ;

г) Вычисляем площадь заданной фигуры:

S = dx + 2 dx = 1 ед 2


2. Вычислить площадь фигуры, ограниченной линиями:

Y = x 2 ; x = y 2 .

Решение:

x 2 = ; x 4 = x ;

x (x 3 – 1) = 0

x 1 = 0 ; x 2 = 1

S = - x 2) dx = ( x 3\2 - ) │ 0 1 = ед 2

3. Вычислить объём тела, полученного вращением вокруг оси 0x фигуры, ограниченной линиями: y = ; x = 1 .

Решение:

V = π dx = π ) 2 dx = π = π │ = π/2 ед. 3


Домашняя контрольная работа по математике
Варианты заданий.

Вариант №1

y = (x + 1) 2 ; y = 1 – x ; 0x


Вариант № 2

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = 6 – x ; y = x 2 + 4


Вариант №3.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = - x 2 + 5 ; y = x + 3


Вариант №4.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = x 2 ; x = 3 ; Ox


Вариант №5.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = 3 + 2x – x 2 ; Ox


Вариант №6.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить площадь фигуры, ограниченной линиями:

y = x + 6 ; y = 8 + 2x – x 2


Вариант № 7

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

3. Вычислить объём тела, образованного вращением вокруг Ox фигуры ограниченной линиями:

y = sin x ; y = 0 ; x = 0 ; x = π


Вариант №8.

1. Решить систему уравнений тремя способами:

2. Вычислить интегралы заменой переменной:

Список литературы

1. Письменный Д.Т. Конспект лекций по высшей математике Части 1, 2. М. АЙРИС ПРЕСС, 2006г.

2. Григорьев В.П., Дубинский Ю.А. Элементы высшей математики. М. Академия, 2008г.

3. Выгодский М.Я. Справочник по высшей математике. М. Наука,2001г.

4. Шипачев В.С. Высшая математика. М. Высшая школа,2005г.

5. Шипачев В.С. Задачник по высшей математике. М. Высшая школа,2005г.

При вычислении определенных интегралов с использованием формулы Ньютона-Лейбница предпочтительно жестко не разграничивать этапы решения задачи (нахождение первообразной подынтегральной функции, нахождение приращения первообразной). Такой подход, использующий, в частности, формулы замены переменной и интегрирования по частям для определенного интеграла, обычно позволяет упростить запись решения.

ТЕОРЕМА. Пусть функция φ(t) имеет непрерывную производную на отрезке [α,β], а=φ(α), в=φ(β) и функция f(х) непрерывна в каждой точке х вида х=φ(t), где t[α,β].

Тогда справедливо следующее равенство:

Эта формула носит название формулы замены переменной в определенном интеграле.

Подобно тому, как это было в случае неопределенного интеграла, использование замены переменной позволяет упростить интеграл, приблизив его к табличному (табличным). При этом в отличие от неопределенного интеграла в данном случае нет необходимости возвращаться к исходной переменной интегрирования. Достаточно лишь найти пределы интегрирования α и β по новой переменной t как решение относительно переменной t уравнений φ(t)=а и φ(t)=в. На практике, выполняя замену переменной, часто начинают с того, что указывают выражение t=ψ(х) новой переменной через старую. В этом случае нахождение пределов интегрирования по переменной t упрощается: α=ψ(а), β=ψ(в).

Пример 19. Вычислить

Положим t=2-х 2 . Тогда dt=d(2-х 2)=(2-х 2)"dx=-2xdx и xdx=-dt. Если х=0, то t=2-0 2 =2, и если х=1, то t=2-1 2 =1. Следовательно:

Пример 20. Вычислить

Воспользуемся заменой переменной . Тогда и . Если х=0, то t=1 и, если х=5, то t=4. Выполняя замену, получим.